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Abstract 
By analyzing evolving centrality roles using time dependent graphs, researchers may predict future centrality 

values. This may prove invaluable in designing efficient routing and energy saving strategies and have profound 

implications on evolving social behavior in dynamic social networks. In this paper, we propose a new method to 

predict centrality values of nodes in a dynamic environment. The proposed method is based on calculating the 

correlation between current and past measure of centrality for each corresponding node, which is used to form a 

composite vector to represent the given state of centralities. The performance of the proposed method is 

evaluated through simulated predictions on data sets from real mobile networks. Results indicate significantly 

low prediction error rate occurs, with a suitable implementation of the proposed method. 
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I. Introduction 
Networks undoubtedly play an important role in 

the modern society. Perhaps the most noteworthy 

reason of accelerated progress in science and 

technology is the increased growth, availability and 

reliability of information networks. Information 

networks, not only includes the World Wide Web, but 

also other networks such as scientific collaborations, 

communication networks, among numerous other 

forms. The concept of a„ social network‟ may be as 

old as human civilization itself; however, it has not 

been extensively investigated until recent years, due 

to advancements in the communication technology, 

international trading, and collaborative research 

projects.  

The mathematical analysis of social networks 

has a fundamental basis in Graph Theory, which 

makes it possible to model, analyze and illustrate 

nodes and relationships effectively. The methods 

developed to analyze social networks have been 

presented. Several general problems in the context of 

social and mobile networks have been investigated 

include community detection, centrality measures, 

network complexity, key player identification, 

information routing strategies, epidemic flows among 

others[1].  

In this paper we analyze the evolution of 

centrality in different nodes and propose new 

methods for the prediction of future centrality values. 

The performances of which shall be evaluated using 

several real opportunistic mobile network datasets.  

This paper is organized as follows: Related work 

concerning dynamic networks and centrality in social 

networks is discussed in section 2. In section 3 the 

main concepts of interest of this work are presented 

which include graph representation of networks in 

subsection 3-1, dynamic networks in subsection 3-2, 

and the centrality measures implemented in our study 

in subsection 3-3. In section 4 the proposed centrality 

prediction method is discussed.Section5 on three real 

datasets and by calculating the prediction errors; the 

performance of the proposed algorithm is shown. 

Concluding remarks are presented in section 6. 

 

II. Related Work 
Identifying node centrality in networks with 

greater accuracy may have unprecedented benefits, as 

it may allow one to design better routing strategies or 

to select key players in a more appropriate way. It is 

also useful in the context of identifying criminal and 

terrorist networks [2].Various metrics and algorithms 

have been proposed to quantify node centrality in 

social and mobile networks. However, most of these 

method shave been formulated to study static 

networks in which the nodes and links do not change 

with time. It is obvious that dynamic networks pose 

significantly more challenges. Such changes in 

dynamic networks may occur due to link removal or 

link appearance between nodes [3-7], or due to the 

mobility of the nodes themselves [8-10]. The study of 

dynamic social networks [7] and mobility analysis in 

mobile networks [11, 12] has attracted increasing 

interest by researchers in recent years. Particularly, 

opportunistic delay tolerant networks (DTNs) have 

been extensively investigated in recent years by 

researchers in telecommunication and computer 

engineering [13-19].The use of specific social aspects 

in networks, including node centrality, for the 

information routing in DTNs has been a rich and 

promising research direction [17].  

In a dynamic network, it is very common that the 

future level of centrality of nodes would not be the 

same as the current. By postulating on the behavior 

of the network and predicting possible future nodes 

of centrality, one may establish a more efficient 

routing or energy consumption strategy for the 
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network. This of course is applicable to both mobile 

communication and sensor networks. The problem of 

centrality prediction in dynamic social or mobile 

networks has been recently addressed in several 

works [1,20]. In [1], several simple methods for 

centrality prediction are compared and the effects of 

various parameters on the performances are 

investigated. An iterative matrix model for dynamic 

networks, which particularly analyses the evolution 

of node centrality, has been proposed in [20].  

 

III. Centrality in Dynamic Network 
In this section the general formulation of the 

problem is described. The notions of dynamic 

network in the context of graph theory, evolution of 

the network, and centrality are addressed.  

 

3-1- Network Graph 

A static graph representing a network of a set 𝑉 

of nodes 𝑣𝑖 ∈ 𝑉and a set 𝐸 of links 𝑒𝑖 ,𝑗 ≡ (𝑣𝑖 , 𝑣𝑗 ) ∈

𝐸between them is shown by 𝐺 = (𝑉,𝐸). The links in 

𝐸 can be directed which means(𝑣𝑖 , 𝑣𝑗 ) ≠ (𝑣𝑗 , 𝑣𝑖). In 

most applications implemented on contact networks, 

such as those used in this study, the network is 

modeled by directed graphs where a link represents a 

contact between a „sender‟ and a „receiver‟, or an 

observing device and an observed device. The 

adjacency matrix 𝐴 of the directed graph is defined as 

a|𝑉| × |𝑉| matrix in which the element 𝐴[𝑖, 𝑗] is zero 

if(𝑣𝑖 , 𝑣𝑗 ) ∉ 𝐸, 1 if (𝑣𝑖 , 𝑣𝑗 ) ∈ 𝐸 and is -1 if(𝑣𝑗 , 𝑣𝑖) ∈

𝐸. Note that a restriction of only one link was defined 

to exist between two nodes at a given time frame. 

The case of multilink contacts can be simply handled 

if we define two separate adjacency matrices 𝐴+ and 

𝐴− for sending and receiving links respectively. Then 

the number of sending links from 𝑣𝑖  to 𝑣𝑗  is 

set,𝐴+[𝑖, 𝑗] and the number of receiving links to 𝑣𝑖  
from 𝑣𝑗  is set, 𝐴−[𝑖, 𝑗].  

 

3-2- Dynamic Network 

In dynamic networks, we can observe the 

network as a sequence of snapshots of static graphs in 

discrete time intervals. Therefore, we can have 

several time dependent adjacency matrices like, 𝐴𝑡
+. 

In this manner,𝐴𝑡
+ 𝑖, 𝑗 = 1 means that there is a link 

from 𝑣𝑖  to 𝑣𝑗 at time instance 𝑡 . In practice, this 

definition may be not very useful in some networks 

with a high frequency of changes, such as mobile 

communication networks. As such, this approach is 

useful for networks with rather slow changes in 

configuration such as friendship networks. The 

reason is that in a rapidly changing network, there 

may be several link appearances or removals for a 

given time window 𝑤𝑡 = [𝑡, 𝑡 + 𝑤] which should be 

noticed in an aggregated way in the analysis of 

temporal centrality. For simplicity, consider a 

snapshot of the network from Cambridge dataset [23] 

as shown in figure 1a. At roughly the same time 

interval, the aggregated network in a 20 second time 

window is shown in figure 1b. As it is seen, several 

contacts have appeared in a short period of 20 

seconds. For centrality analysis and prediction, this 

time window consideration is very important, so we 

utilize windowed adjacency matrices 𝐴𝑤𝑡
+ and 𝐴𝑤𝑡

−  in 

our study.  

 

      
(a) (b) 

Fig.1:Difference between (a) a single snapshot of network, and (b) aggregated graph of network in a 20 sec time 

window around the same time, from Cambridge dataset 

 

3-3- Centrality Measure  
In this paper we use Katz centrality measure [20] 

which sums weighted paths between one node and 

another, such that longer paths have lower weights 

while the most direct paths (links) possess a higher 

weight. From the adjacency matrix 𝐴, the Katz vector 

of centrality measure can be calculated as: 
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𝐶 =     𝛼𝐴 𝑘
 𝑉 
𝑗=1

∞
𝑘=1  𝟏|𝑉|           (1) 

 

where𝟏|𝑉| is a vector of length |𝑉| consisting of 

1‟s, and 𝛼 is a small weight factor. By selecting a low 

enough value for𝛼 (smaller than the inverse of largest 

absolute Eigen value of the adjacency matrix), the 

summation may be convergent. For our study, we 

choose 𝛼 =
1

|𝐸|
 which gives a centrality measure of 1 

for a node in the center of a star graph. We further 

calculate the summation up until 𝑘 = 5 and suppress 

further terms. 

We also consider the degree of nodes in our 

centrality analysis. The degree can be seen as the first 

term in Katz centrality ,if𝛼 = 1. By using the degree 

of nodes we are able to differentiate between center 

nodes of star graphs with a varied number of links. 

One of the advantages of using these measures (i.e. 

Katz centrality and degree centrality) is the speed of 

computation in contrast to other measures founded on 

shortest path detection.  

 

IV. Centrality Prediction 
To predict future centrality levels of nodes in a 

network, we utilize correlation and distance analysis 

on previous centrality measurements. The index we 

use for centrality is the product of Katz centrality 

values and degree centrality values. The reason of 

this choice is that the Katz centrality alone 

(calculated by setting 𝛼 =
1

|𝐸|
), has been proved 

inefficient in calculating centrality in star graphs of 

varied degrees. On the other hand, degree centrality 

alone does not contain information regarding non-

direct paths between nodes. Therefore, we define a 

centrality metric such as: 

 

𝐶 𝑖 = 𝐶𝑖deg(𝑣𝑖)             (2) 

 

It is proposed that future values of this measure 

can be predicted from previous values. Furthermore, 

in contrast to previous methods, the proposed 

approach utilizes the previous values of all nodes for 

an accurate prediction of centrality, not merely the 

history of the node in question. 

The proposed algorithm for prediction of future 

centrality values can be described as: 

1- At each time 𝑡, calculate centrality measures 𝐶 𝑖for 

all nodes and store as vector𝐶 (𝑡).  

2- At time 𝑡𝑛 , calculate correlation coefficients 

between 𝐶 (𝑡𝑛)  and all the saved 𝐶 (𝑡𝑖) vectors 

for  𝑡𝑖 = 𝑡𝑛 − 𝑙𝑖 , where 𝑙𝑖 = 𝑡𝑛 − 𝑡𝑖  is the lag. Save 

correlation values in an array 𝑐𝑜𝑟𝑟(𝑖). Also, calculate 

Euclidean distance between 𝐶 (𝑡𝑛)  and every saved 

𝐶 (𝑡𝑖) vectorand store in array 𝑑(𝑖). 

3- Find the smallest index 𝑖𝑐  for which  𝑐𝑜𝑟𝑟 𝑖𝑐 =
max{𝑐𝑜𝑟𝑟} . Also find smallest index 𝑖𝑑  for 

which 𝑑 𝑖𝑑 = min{𝑑}. 

4- Set the centrality vector 𝐶 (𝑡𝑖𝑐+1) as the predicted 

centrality vector𝐶 𝑐(𝑡𝑛+1) . Set the centrality vector 

𝐶 (𝑡𝑖𝑑+1) as the predicted centrality vector𝐶 𝑑(𝑡𝑛+1). 

5-After the occurrence of𝐶 (𝑡𝑛+1), calculate the error 

between real values and predicted values. 

 

As it can be seen, this algorithm calculates 

correlation and distance between vectors composed 

of centrality values for every node. After which the 

state of the whole network is compared to its 

previous state. So the prediction of centrality measure 

for a node is obtained from the historical information 

of all nodes. To provide the definition of distance and 

correlation used, consider the array 𝐶 (𝑡𝑖) formed by 

placing 𝐶 𝑗  𝑡𝑖  values as its elements, such that: 

 

𝑑 𝑖 =   (𝐶 𝑗  𝑡𝑛 − 𝐶 𝑗  𝑡𝑖 )2

|𝑉|

𝑗=1

 (3) 

 

and 

 

𝑐𝑜𝑟𝑟 𝑖 

=
  𝐶 𝑗  𝑡𝑛 − 𝐶  𝑡𝑛 

         𝐶 𝑗  𝑡𝑖 − 𝐶  𝑡𝑖 
        

|𝑉|
𝑗=1

   𝐶 𝑗  𝑡𝑛 − 𝐶  𝑡𝑛 
        

2
|𝑉|
𝑗=1

   𝐶 𝑗  𝑡𝑖 − 𝐶  𝑡𝑖 
        

2
|𝑉|
𝑗=1

 
(4

) 

 

 

where the “bar” on a quantity means its mean value.  

 

V. 5- Performance Evaluation 
 

To show the performance of the proposed centrality 

prediction method, we deploy it to three real datasets, 

namely; Haggle project named Intel, Cambridge, and 

Infocom [21-23]. The Intel dataset consists of contact 

recordings of 9 I Mote devices for a period of 5 days 

in the Intel Research Cambridge Corporate 

Laboratory. Cambridge dataset contains contact 

recordings of 12 I Mote devices for 5 days in the 

Computer Lab at University of Cambridge. Infocom 

dataset contains the contacts of 41 devices for 3 days 

during the IEEE Infocom conference at The Grand 

Hyatt in Miami.  

To show the capability of correlation and distance 

analysis in the proposed prediction method, the plot 

of correlation between 𝐶 (𝑡𝑛)  and 𝐶 (𝑡𝑖)  vectors 

for 𝑡𝑖 = 𝑡𝑛 − 𝑙𝑖 , versus the lag𝑙𝑖  is depicted in figure 

2 using a case from Infocom dataset with an 

aggregate time window size of 120. For the same 

case, the plot of distance between 𝐶 (𝑡𝑛)  and 𝐶 (𝑡𝑖) 

vectors is shown in figure 3.  
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Fig.2:Correlations between current and past vectors of centrality values. 

 

 
Fig.3:Distance between current and past vectors of centrality values 

 

In figure 2, a high correlation of values is 

observed for several lags. Figure 3 highlights the 

existence of several low distances between current 

and past centrality vectors. Thus, substantiating the 

premise of the proposed algorithm. It should be noted 

that the result is shown for a 𝑡𝑛 , with a suitably 

nonzero neighborhood of centrality values. This is 

important because for zero centrality periods, the 
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correlation and distance are not meaningful in this 

context. 

The results of deploying the proposed prediction 

method on three datasets, using various aggregation 

time windows are shown in Table 1 

where 𝑒𝑐 represents mean squared error (MSE) for 

prediction of observed correlations, and 𝑒𝑑 is used to 

indicate MSE for prediction of distance. MSE is 

defined as 

𝑀𝑆𝐸 =
 (𝐶 𝑗  𝑡𝑛+1 −𝐶 𝑗

  𝑡𝑛+1 )2|𝑉 |
𝑗=1

|𝑉|
        (5) 

where𝐶 𝑗
  𝑡𝑛+1  is the predicted value. 

It can be observed that for each dataset certain 

window sizes indicate better results through 

correlation and others indicate distance analysis yield 

better results. However, these differences between 

the results from two kinds of prediction methods are 

almost negligible. It is also seen that for each dataset 

a suitable aggregation window size can be set, which 

is mainly dependent to the nature of the experiment 

situations behind dataset itself. Variations of 

correlation and distance mean squared errors by 

changing the window size are shown in figure 4. 

 

 

𝑤 (sec) 

case 
10 30 60 90 120 

Intel 
𝑒𝑐  0.028085 0.031759 0.028411 0.031098 0.052171 

𝑒𝑑  0.029357 0.031117 0.028026 0.035527 0.05317 

Cambridge 
𝑒𝑐  0.0077186 0.0051221 0.0060191 0.0039887 0.0036592 

𝑒𝑑  0.0075392 0.0051669 0.0064027 0.0039887 0.0037444 

Infocom 
𝑒𝑐  0.015124 0.012267 0.0073041 0.0075916 0.0087773 

𝑒𝑑  0.013737 0.013783 0.0078664 0.0066497 0.0078577 

Table1. Results of prediction errors by correlation and distance based analysis for the three datasets and 

different aggregation time window sizes. 
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(b) 

 

 
(c) 

Fig.4:Variation of correlation and distance MSE by window size for (a) Intel, (b) Cambridge, and (c) Infocom 

datasets. 

 

VI. Conclusion 
This paper has proposed a prediction method for 

centrality of nodes in dynamic social mobile 

networks. This method is based on observing the 

correlation and distance values between the current 

vector of node centrality and its past measurements. 

As such, a given state of the network can be 

compared to its previous states. It has been found that 

0 10 30 60 90 120
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8
x 10

-3

w (sec)

m
s
e

 

 

correlation error

distance error

Cambridge dataset

0 10 30 60 90 120
0.006

0.008

0.01

0.012

0.014

0.016

w (sec)

m
s
e

 

 

correlation error

distance error

Infocom dataset



 

Poria Pirozmand Int. Journal of Engineering Research and Applications                      www.ijera.com 

ISSN : 2248-9622, Vol. 5, Issue 5, ( Part -4) May 2015, pp.15-22 

 www.ijera.com                                                                                                                                21 | P a g e  

correlation values are high and distance values are 

low for similar states of the network. The future node 

centralities are predicted by finding the nearest 

suitable lag, based on maximum correlation and 

minimum distance. In this study, the node centralities 

are quantified as a product of Katz centrality and the 

simple degree of the nodes. The performance of the 

proposed method is evaluated by performing 

predictions on three datasets of real mobile social 

networks. By both correlation and distance-based 

prediction methods, very low prediction errors are 

obtained for the three datasets, with various 

aggregate time window sizes.  
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